دانلود پاورپوینت آموزش کامل توابع بسل
دانشجویان و کاربران گرامی محتوای این فایل پاورپوینت جامع با عنوان آموزش کامل توابع بسل (Bessel) می باشد که در قالب پاورپوینت و با فرمت (pptx) و در 57 اسلاید تهیه و تنظیم شده است. جهت خرید و دانلود فایل به روی گزینه افزودن به سبد خرید کلیک نمایید.
بخشی از متن:
توابع بسل، (به انگلیسی: Bessel functions) اولین بار توسط دانیل برنولی تعریف شدند و سپس فردریش بسل فرم عمومی آن را بررسی نمود. توابع بسل جوابهای معادله دیفرانسیل زیر میباشند:
{\displaystyle x^{2}{\frac {d^{2}y}{dx^{2}}}+x{\frac {dy}{dx}}+(x^{2}-\alpha ^{2})y=0}
معادله بسل معادلهای است که از معادلات قابل حل با سریهاست، و دارای نقطه تکین منظم است. نقطه x=0 تنها نقطه غیرعادی معادله فوق است. جوابهای معادله به توابع بسل معروفند. در معادلهٔ بالا {\displaystyle \alpha } یک عدد حقیقی یا یک عدد مختلط دلخواه میباشد که مرتبه تابع بسل را مشخص میکند.بطورکلی توابع بسل از حل معادلات دیفرانسیل پارهای لاپلاس و معادله هلمهولتز در مختصات استوانهای و مختصات کروی بدست میآیند. از این رو این توابع در تئوری انتشار امواج و تئوری پتانسیل اهمیت بسزایی دارند. البته این توابع در حل معادلات ارتعاشات، معادلات رسانایی گرما و امواج الکترومغناطیس در مختصات استوانهای ظاهر میشوند.
تعریف:
توابع بسل نوع اول آن دسته توابعی هستند که مربوط به {\displaystyle \alpha } بعنوان عدد طبیعی منفی میباشند که در صفر متناهی میباشد:
{\displaystyle J_{\alpha }(x)=\sum _{m=0}^{\infty }{\frac {(-1)^{m}}{m!\Gamma (m+\alpha +1)}}{\left({\frac {x}{2}}\right)}^{2m+\alpha }}
که {\displaystyle \Gamma (z)} تابع گاما میباشد که حالت کلی فاکتوریل برای اعداد غیرطبیعی میباشد. توابع بسل نوع دوم آن دسته توابعی هستند که در مبدا مختصات (نقطه صفر) تکین (Singular) هستند:{\displaystyle Y_{\alpha }(x)={\frac {J_{\alpha }(x)\cos(\alpha \pi )-J_{-\alpha }(x)}{\sin(\alpha \pi )}}}
فهرست مطالب:
تابع مولد
بسط سری
مرتبه درست منفی
نمودار
روابط بازگشتی
معادله دیفرانسیل بسل
نمایش انتگرالی
حالت خاص
مثال: پراش فرانهوفر
مثال: کاواک مشدد استوانه ای
شرایط مرزی
صفرهای تابع بسل
صفرهای مشتقات تابع بسل
تعامد
سری بسل
مثال: پتانسیل الکترواستاتیکی در استوانه توخالی
صورت پیوستاری
تابع نویمن
نمودار
صورت سری
مقادیر حدی
نمایش انتگرالی
فرمول های رونسکی
مثال: موجبرهای هم محور
توابع هنکل
مثال: امواج پیش رونده استوانه ای
انتگرال اشلافلی
توابع بسل و نویمن بر حسب تابع هنکل
معادله هلم هولتز
مختصات استوانه ای
توابع تعدیل یافته بسل
و…
نکات مهم : پس از پرداخت وجه لینک دانلود به شما نمایش داده میشود و برای اطمینان بیشتر یک لینک دیگر به ایمیل شما ارسال میگردد.
نقد و بررسیها
هنوز بررسیای ثبت نشده است.