تخفیف!

پاورپوینت آشنایی با لجستیک رگرسیون

قیمت اصلی ۱۲,۰۰۰ تومان بود.قیمت فعلی ۱۰,۰۰۰ تومان است.

کاربران گرامی محتوای فایل کاملتریـن و بهتریـن پاورپوینت در مورد آشنایی با لجستیک رگرسیون می باشد که در قالب فایل ppt (قابل ويرايش و آماده پرينت) و در حجم 25 اسلاید با کیفیت عالی تهیه و تنظیم شده است. جهت خرید و دانلود این فایل به روی گزینه افـزودن به سبـد خریـد کلیک نمایید.

پاورپوینت آشنایی با لجستیک رگرسیون

کاربران گرامی محتوای فایل کاملتریـن و بهتریـن پاورپوینت در مورد آشنایی با لجستیک رگرسیون می باشد که در قالب فایل ppt (قابل ويرايش و آماده پرينت) و در حجم 25 اسلاید با کیفیت عالی توسط تیم وب سایت راهنمای دانشجو تهیه و تنظیم شده است. جهت خرید و دانلود این فایل به روی گزینه افـزودن به سبـد خریـد کلیک نمایید.

مشخصات محصول :

عنوان: آشنایی با لجستیک رگرسیون

تعداد صفحه: 25 اسلاید

فرمت: ppt قابل ويرايش و آماده پرينت

مقدمه :

بر خلاف نامش این روش برای دسته بندی مورد استفاده قرار میگیرد نه رگراسیون. برای حالت K = 2 این مدل بسیار ساده بوده و از یک تابع خطی بهره می جوید. بردار ورودی بصورت < X1 … Xn > و بردارخروجی Y بولین در نظر گرفته میشود. تمام Xi ها از Y مستقل فرض شده و مقدار P(Xi | Y( = yk گوسی در نظر گرفته میشود. (N(μik,σi همچنین توزیع (P(Y بصورت برنولی در نظر گرفته میشود.

آشنایی با لجستیک رگرسیون

مقایسه با رگراسیون خطی

برای مدل کردن متغیرهائی که مقادیر محدودی به خود میگیرند بهتر از رگراسیون خطی عمل میکند زیرا مدل خطی هر مقداری را در خروجی تولید میکند درحالی که برای چنین متغیرهائی مقادیر محدودی مورد نیاز است. در رگراسیون خطی مقدار متغیر مورد نظر از ترکیب خطی متغیرهای مستقل بدست می آید در حالیکه در لجستیک رگراسیون از ترکیب خطی تابع logit استفاده میشود. در رگراسیون خطی پارامترها به روش least squares بدست می آیند در حالیکه این روش برای لجستیک رگراسیون فاقد کارائی بوده و از روش maximum likelihood estimation برای پیدا کردن پارامترها استفاده میشود.

ایده اصلی

دسته بندی کننده بیزی برای محاسبه (P(Y|X لازم دارد تا مقادیر (P(Y و (P(X|Y را یاد بگیرد. چرا مستقیما (P(Y|X یاد گرفته نشود؟ لجستیک رگراسیون مقدار احتمال فوق را محاسبه میکند. دسته بندی کننده بیزی یک دسته بندی مولد است در حالیکه لجستیک رگراسیون یک دسته بندی کننده discriminative است.

آشنایی با لجستیک رگرسیون

فهرست مطالب :

ایده اصلی

مقدمه

مقایسه با رگراسیون خطی

logistic function

احتمال تعلق به دسته ها

فرضیات رابطه قبل

سایر نتایج

Discriminant  functions

برای حالت چند کلاسه

بدست آوردن وزنها

Expressing Conditional Log Likelihood

Maximizing Conditional Log Likelihood

Maximize Conditional Log  Likelihood: Gradient Ascent

مشکلات استفاده از ML

Regularization in Logistic Regression

استفاده از MAP

MLE vs MAP

Logistic Regression for functions with Many Discrete Values

Generative Classifiers

Use Naïve Bayes or Logisitic Regression

آیا دسته بندی کننده بیزی خطی است

Probabilistic Generative Models

 

✅ نکات مهم : پس از پرداخت وجه لینک دانلود به شما نمایش داده میشود و برای اطمینان بیشتر یک لینک دیگر به ایمیل شما ارسال میگردد.

توضیحات تکمیلی

تعداد صفحات

فرمت فایل

نقد و بررسی‌ها

هنوز بررسی‌ای ثبت نشده است.

اولین کسی باشید که دیدگاهی می نویسد “پاورپوینت آشنایی با لجستیک رگرسیون”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

قیمت: قیمت اصلی ۱۲,۰۰۰ تومان بود.قیمت فعلی ۱۰,۰۰۰ تومان است. افزودن به سبد خرید
enemad-logo